If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+28x-3=0
a = 5; b = 28; c = -3;
Δ = b2-4ac
Δ = 282-4·5·(-3)
Δ = 844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{844}=\sqrt{4*211}=\sqrt{4}*\sqrt{211}=2\sqrt{211}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{211}}{2*5}=\frac{-28-2\sqrt{211}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{211}}{2*5}=\frac{-28+2\sqrt{211}}{10} $
| 4(2x+5)=6x-24 | | 71+2b=5b-4 | | 20/x+9=13 | | 2x+0=27 | | -8=4(x-11) | | 240/0.6a=6000 | | X^3+4x^2+8x+12=0 | | 0.6+08=0.56x+2.32 | | (80-9x)+18=9x+8 | | 2/3m+3=4/3 | | 2/3m+3=4/7 | | 3x2+9x+12=0 | | 7+3c/5=2 | | H(t)=16t^2+570 | | 2x²+x=150 | | 7x/3x+2=3 | | 5y+6=3y+8 | | (3^x)=0.2 | | 180*x=144 | | 1. 2x–20=10 | | 4x+16=x+166 | | 213=143-y | | 122-x=3x+14 | | x^2+12x+18=-9 | | 5x+72=800 | | x^2+12x+18=9 | | 14-8n=-6(n+9) | | -7/2n=14 | | 9x=255 | | -7/2n=16 | | 71=3(3j−3)−1 | | -7/2n=18 |